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SYMBOLS AND ABBREVIATIONS

As an aid to locating expressions within the paper, the section "Index of Variable Definitions, Interpolations, 
and Derivatives" has also been provided at the end of the paper.

0 ........... Null vector

A .......... Cross-sectional area

A* ......... = A, but with distance x along the river and
depth h as explicit independent variables

Represents either a^ or a^
. 

fly........... Nodal value of depth at one of four corner
nodes or two midside nodes

i. 
a .......... Column vector of nodal water depths

ap......... Nodal value of discharge at the corner node

sr^... ...... Column vector of nodal discharges

a ........... Column vector of nodal discharges a^ and
nodal water depths a

B .......... Stream width at the water surface

B* ......... = B, but with stream distance x and water
depth h as explicit independent variables

c . 

F

= JgA/B, critical speed 

Derivative matrix

Integral of the continuity equation over a 
space-time element

= Fc, but with nodal discharges a^ and nodal 
water depths a as explicit independent 
variables

Differential expression that for an exact 
solution is equal to zero along the positive (+) 
or negative (-) characteristic

= Fg±, but with nodal discharges a^ and nodal 
water depths a 1 as explicit independent 
variables

Weighted integral of differential equation valid 
along the positive characteristic ( + ) or 
negative characteristic (-) through node;

0FJ± ........ = Fj±t but with nodal discharges a^ and nodal
water depths a as explicit independent 
variables

g ............ Acceleration of gravity

G .......... Right side of momentum equation

h ........... Water depth

A

h ............ Integration parameter corresponding to depth
h

Water depth corresponding to elevation z^ at 
which data are specified

h± ......... Total time derivative of depth h along the
positive characteristic (+) or negative 
characteristic (-)

i ............ As superscript, indicates intercept with the
boundary of the neighborhood of restriction

I± .......... Integrand along the positive (+) or negative
(-) characteristic

J ........... Jacobian matrix

|J| ....... Determinant of the Jacobian matrix

J ........ Inverse of the Jacobian matrix

Index of node along the approximation of the 
characteristic path

m .......... Number of subintervals into which the local
time interval [nji-l, 1$] is divided; also, the 
number of elevation nodes within a data cross 
section

n ........... Manning's roughness coefficient; also, the
number of data cross sections

n* .......... = n, but with stream distance x and water
depth h as explicit independent variables

HT .......... Manning's coefficient using Jarrett's formula

n ........... Slope-corrected Manning's coefficient

IV Symbols and Abbreviations



N .......... Number of elements

O h
NJ.......... Represents either Nr or N;

Nj.......... Shape function that is linear in time t and
quadratic in space*

Njr......... Shape function that is linear in both time t and
space x

P .......... Wetted perimeter

P* ......... = P, but with stream distance x and water
depth h as explicit independent variables

q ........... Lateral inflow (discharge) per unit distance
along the river

Q .......... Discharge

Q± ........ Total time derivative of discharge Q along the
positive characteristic (+) or negative 
characteristic (-)

R .......... = A/P, hydraulic radius

RQ ......... = Reference hydraulic radius; 7 feet in this
report

S .......... Slope

SQ ......... = Reference slope, 0.002 in this report

Sf ......... Friction slope

Sf ........ Friction slope given by Manning's expression,
unmodified for steep slopes

Sw ........ Water surface slope

Se ......... Exponent in the steep-slope factor $

Sfoc ..... Coefficient in the steep-slope factor $

Smin .... Quantity related to water surface slope, used in 
the steep-slope factor $

t ............ Time

Af ......... Increment of time t

t; ........... Nodal value of time t

T .......... As superscript, indicates transpose of a matrix

u ........... = Q/A, average stream velocity

Velocity component of lateral inflow in the 
longitudinal direction x

v ........... As superscript, indicates the vertex of the
space-time curves of dependence

W;± ...... Weighting function for integration along the
positive characteristic (+) or negative 
characteristic (-) passing through node;

x ............ Longitudinal distance along the river

AJC ......... Increment of spatial distance A:

Computational nodal value of river distance JC, 
or stream coordinate at which data are 
specified

x± .......... = u ± JgA/B, total time derivative of river
distance x along the positive characteristic (+) 
or negative characteristic (-)

= u T JgA/B, total time derivative of river 
distance x along the opposite characteristic 
from *± when using upper or lower signs

z ............ Elevation

Az ......... Increment of elevation

zjj. .......... Channel thalweg (channel bottom) elevation

Elevation within a data cross section at which 
data are specified

a , ft ... Expressions used in approximating

r ........... Path of a characteristic

8 ........... Indicates variation of the following variable

e ........... Read "is an element of"

f ........... Local depth coordinate

Integration parameter corresponding to local 
depth $ 

r\ ........... "Time" coordinate of local element

A»7 ........ Increment of local time coordinate rj

A
r\ ........... Integration parameter for local time coordi­

nate r\

Symbols and Abbreviations V



Local time coordinate of a node along the 
approximation of the characteristic path

Local "river distance" coordinate for channel 
parameter interpolation

increment along the 
approximation of the characteristic path

ith auxiliary node within the local time interval

Local time coordinate of the "intercept" with 
the neighborhood of restriction of the positive 
characteristic (+) or negative characteristic (-) 
that passes through node;

Value of the local time variable ry at the vertex 
of the characteristic

Local time coordinate of the "vertex" at node ; 
of the positive characteristic (+) or negative 
characteristic (-)

Parameter used in setting the time extent of 
the neighborhood of restriction

"Space" coordinate of local element 

Increment of local space coordinate £

Local space coordinate of a node along the 
approximation of the characteristic path

Value of the local space variable £ at the 
vertex of the characteristic

Total r\ derivative along the characteristic path 
in local coordinates

p , a , A, v .. Subscript increments in the definition of the 
approximation of derivatives for Hermite 
interpolation

S ........... Summation sign

$ ........... Steep-slope factor for friction slope St

^Om> ^Op> ^lw> tip    Basis functions for Hermitian 
interpolation in local river distance H

X ........... Parameter used in setting the space extent of
the neighborhood of restriction

I

flip .. Basis functions for Hermitian 
interpolation in local depth f

Notation above a variable indicating average 
value

Notation indicating evaluation of the 
expression to the left at a particular point

Integral sign

9 ........... Partial derivative sign

~ ........... Approximate equality sign

Read "is defined as"

METRIC CONVERSION FACTORS

For the convenience of readers, the inch-pound units used in this report may be 
converted to metric units by using the following factors:

Multiply inch-pound units

foot (ft)
cubic foot (ft3)

cubic foot per second (ft3/s)

By

0.3048
28.32
0.02832
28.32
0.02832

To obtain metric units

meter (m)
liter (L)
cubic meter (m3)
liter per second (L/s)
cubic meter per second (m3/s)

In addition, Manning's expression for friction slope, equation 93, may be expressed by

where discharge Q has units cubic meters per second, area A is specified in square meters, 
and wetted perimeter P is given in meters.

VI Symbols and Abbreviations



Mass-Conserving Method of Characteristics 
for Streamflow Modeling

By William G. Sikonia

Abstract

A robust numerical model is presented for the com­ 
putation of unsteady streamflow on steep river slopes. The 
one-dimensional model uses the method of characteristics on 
a specified space-time grid to solve the Saint-Venant equa­ 
tions. An additional continuity equation requirement on each 
space-time element provides greatly improved conservation of 
mass over traditional implementations of the method of 
characteristics on a fixed grid. The space-time geometry of the 
problem is described in a finite element setting. Hermite 
interpolation of channel parameters is used to avoid numerical 
difficulties that may occur with steep slopes due to disconti­ 
nuities in the derivatives of data such as channel top width. 
Manning's equation for friction slope can be modified by a 
factor to make the slope more appropriate for steep rivers. The 
standard Manning's friction slope can also be used, if pre­ 
ferred. The computer model is not restricted to steep slopes, 
and applies as well to gently sloping streams. Two numerical 
examples support the mathematical approach and compu­ 
tational algorithm.

INTRODUCTION

Background

The implicit method of characteristics is an appealing 
method for solving hyperbolic differential equations. This 
method has been applied in the context of hydraulics to 
solve the Saint-Venant equations, which describe one- 
dimensional, unsteady, open-channel flow (Edenhofer and 
Schmitz, 1981). In the method, characteristics are projected 
backward only within a given element on a fixed space-time 
grid (fig. 1), and are never extrapolated beyond the boun­ 
daries of that element. For the space-time element 1-2-3-4 in 
figure 1, characteristics either intersect one of the vertical 
boundaries (1-4 or 2-3), as characteristic ab does, or 
intersect the base (1-2) of the element, as characteristic de 
does. (The mathematical construction of characteristics will 
be given in succeeding sections for readers unfamiliar with

the method.) In some instances, however, the method has 
resulted in unacceptable nonconservation of mass (Wylie, 
1980). Wylie referred to nonconservation in the case in 
which a characteristic, such as de in figure 1, intersects the 
base of the space-time element. The situation was further 
compounded because the method seemed to perform well 
for some applications but produced serious inaccuracies for 
others. In the same paper, Wylie described a method of 
"time-line" interpolations to improve mass conservation; 
more discussion of the "time-line" method, and further 
insight into the problem was provided later by Goldberg and 
Wylie (1983). The "time-line" method involves projecting 
the characteristics backward in time until a vertical boun­ 
dary of the space-time grid is intersected, even if this means 
projecting through the base of the current space-time 
element into elements at preceding times, such as extending 
characteristic de in figure 1 backwards in time along ef. 
Note that if a characteristic (such as ab in figure 1) 
intersects the vertical boundary within the originating 
space-time element, the "time-line" and implicit methods of 
characteristics are identical. See also Lai (1988) for a 
composite algorithm for the method of characteristics that 
includes these approaches, as well as another variant 
involving extension of a characteristic such as ab in figure 
1 outward in distance along be.

Purpose and Scope

This paper presents a solution method that will 
preserve the desirable features of the method of char­ 
acteristics, but will also conserve mass to a satisfactory 
approximation. The method differs from the other 
approaches just mentioned. In particular, this method does 
not involve extrapolation of the characteristic beyond the 
originating element.

The paper is organized as follows. The mathematical 
basis of the method of characteristics, as applied to the 
Saint-Venant equations for streamflow, is presented first. 
The finite element setting that is used for the numerical

Introduction 1



and the momentum equation

.Characteristic paths

\i
Distance x

Figure 1. Characteristic paths projected within and beyond 
element 1-2-3-4.

procedure is described next; the unknown discharge Q and 
water depth h are approximated by shape function expan­ 
sions on space-time finite elements. A numerical procedure 
for approximating the characteristic paths is presented; then 
the continuity equation is included as part of the procedure 
to provide mass conservation over the space-time elements. 
The global system of equations that is solved within the 
method is described next. The underlying nonlinear global 
system is approximated, using Newton-Raphson iteration, 
by a linear global system. The nonlinear and linear global 
systems of equations are simply expressed in symbolic, 
condensed form in vector and matrix notation. The sym­ 
bolic form of the approximating linear system is expanded 
by providing partial derivatives needed for its expression. 
Next, independent Hermitian interpolation is used to 
describe channel geometry. Description of the model is 
completed with a discussion of a factor that can be applied 
to Manning's coefficient to account for steep slopes. 
Finally, two comparisons of the model of this paper with 
existing models are given. In the first example, the model is 
compared on a steep river with a step-backwater, steady- 
state model; in the second example it is compared with an 
existing dynamic model.

at
a (Q 1 ah f

v J V.

-u o=0.

(2)
In equations 1 and 2, B is stream width at the water surface, 
h is depth, t is time, <2 is discharge, jc is longitudinal distance 
along the river, <? is lateral inflow (discharge) per unit x 
distance, A is cross-sectional area, g is acceleration of 
gravity, zb is the thalweg (channel bottom) elevation, uq is 
the downstream velocity component of lateral inflow, and Sf 
is the friction slope. 

Let

A(x,t)-A (x,h(x,t)); (3)

then

3x 3x dh dx 3x 3x (4)

Expanding the second term of equation 2, substituting 
equation 4, and rearranging terms yields

+ <-BU )

2 dA 1 3x"
dz,

(5)

In equation 5, u = Q/A = average stream velocity. Charac­ 
teristics are specified when the following system of 
equations is linearly dependent; this occurs when appli­ 
cation of Cramer's rule of determinants results in the 
indeterminate form "0/0".

DESCRIPTION OF THE METHOD OF 
CHARACTERISTICS APPLIED TO 
STREAMFLOW MODELING

One-dimensional open-channel flow is described by 
the Saint-Venant equations, consisting of the continuity, or 
mass conservation, equation

at dx (i)

2u

0 0 B"
rt

1 (-Bu+gA) 0

100

0 x 1_

Q "
x

<*t

hx
h

q
G

Q
h_

(6)

In equation 6, the dot notation indicates total time 
derivative. Setting the determinant of the matrix on the left 
side of equation 6 to zero (to provide the zero in the 
denominator of the "0/0" relation) yields, after some alge-
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bra, the equations that specify the locations of the charac­ 
teristics in the x-t plane:

x+=u±ygA/J3 for upper, lower signs. (7)

In equations 7, the notation x± denotes the total time 
derivative of x along the positive characteristic (upper 
signs), or negative characteristic (lower signs). The 
extremely convenient notation ± that will be used through­ 
out the paper has a dual interpretation in mathematics. In 
singular usage, as in the phrase "equation x±=u±^igA/B" the 
± is, in effect, notation for a general expression where a 
choice of one sign (+) or the other (-) can be made, much 
in the same way that an index n on (-l)w can be thought of 
as a symbolic quantity. The plural interpretation of ±, as in 
the phrase "equations x±=-u±^gAIB" refers to the set of 
equations formed by enumerating the possibilities, first with 
the upper sign (+), and then with the lower sign (-); this is 
similar to considering the set of numbers (-l)w, for n=l,2. 
Whether the singular, symbolic usage or the plural 
enumeration of the set of possibilities is intended will 
depend on the context in which the ± occurs. To emphasize 
that equations 7 mean the set of two characteristics we 
include the phrase "for upper, lower signs," which serves 
the same function as the phrase "for n=l,2" in the example 
of the index. One further comment is necessary: In 
interpreting a set of equations such as equations 7, one 
should consistently use the upper signs or the lower signs 
throughout. The reason for this caution is demonstrated 
below in equations 8, which have mixed ± and + signs.

Replacing the third column of the matrix in equation 
6 by the column vector on the right side of that equation, 
and setting the determinant of the resultant matrix to zero 
(to provide the zero in the numerator of the "0/0" relation) 
yields ordinary differential equations that are satisfied along 
the characteristic curves of equations 7:

Finite Element Formulation

Equations 8 are solved numerically along charac­ 
teristics (equations 7) in a space-time finite element (1- 
2-3-4 in fig. 2). The directions 1-2 and 4-3 correspond to an 
increment Ax of spatial distance along river coordinate x, 
and the directions 1-4 and 2-3 correspond to an increment of 
time At, from the "old" time at 1 or 2, to the "new" time at 
4 or 3.

Variables are defined within the finite element by a 
linear combination of shape functions having nodal values 
as coefficients. The discharge Q has a bilinear approxi­ 
mation on nodal values at points 1, 2, 3, and 4,

I -5<x, (10)

In equation 10, each Nf (xjt) denotes a bilinear shape 
function over the space-time element that is unity at node j 
and zero at the other three corner nodes. The notation af 
denotes the nodal value of discharge Q at corner node/, and 
the summation is over the four corner nodes.

For the reason to be explained later in the section 
"Addition of Continuity Equation for Mass Conservation," 
the water depth h is approximated linearly in time, but 
quadratically in distance. To this end, auxiliary nodes 5 and 
6 are placed at the midpoints of the sides 1-2 and 3-4 
(fig. 2). Water depth h is then given by

(IDj- 1 fa-

for upper, lower signs. (8)

The equation associated with the upper signs in equations 8 
is satisfied along the positive characteristic specified by the 
upper signs in equations 7. Similarly, the lower signs 
specify the negative characteristic (equations 7) and the 
equation satisfied along it (equations 8).

The notations Q± and ti± denote total time derivatives 
of Q and h along the respective characteristics. Note that the 
slope of the opposite characteristic JcT appears in equations 
8, not the slope Jc± of the characteristic itself:

(9)

In equation 11, each Nj (x,f) is a shape function that is linear 
in time and quadratic in space and is unity at node/ and zero 
at the other nodes. The summation index / ranges over six 
nodes, namely the four corner nodes 1, 2, 3, and 4, and two 
midside nodes 5 and 6. The notation ctf denotes the nodal 
value of depth h at node /.

It is most convenient to work in a standard local 
element of fixed dimensions, and to define the basis 
functions on this local element. To this end, the variably 
sized space-time element 1-2-3-4, with sides Ax and At, is 
mapped into the local element in independent variables 
£ and T) (fig. 2). The local element is square, with sides 
£e [-1,1] and T|e [-1,1]. (For simplicity, the corresponding 
nodes of the local and global elements have been identified 
by the same local node numbers; in practice, an additional 
set of global node numbers is needed to identify the multiple 
global elements.) Local variable T) corresponds to the time

Description of the Method of Characteristics Applied to Streamflow Modeling 3
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Figure 2. Finite element geometry.

variable t in global coordinates, and ^ corresponds to global 
space coordinate x. The transformation between global and 
local elements is defined by the same basis functions Nj 
used for expanding the water depth h. The Nj are defined 
on the local element as follows: 
Corner nodes

(12)

(13)

(14)

(15)

Midside nodes

(16)

(17)

Corner nodes

(18)

(19)

(20)

(21)

The mapping from local to global coordinates is 
specified using the shape functions Nj, as follows:

(22)

(23)

J-l
6

The billinear shape functions Afp are given on the where the summation in j is over the six corner and midside 
local element by the following: nodes, and Xj and tj are the nodal values of river distance x

4 Mass-Conserving Method of Characteristics for Streamflow Modeling



and time t at the yth node. Because we have chosen always 
to place the midside nodes exactly halfway between the 
corner nodes, the mapping defined by equations 22 and 23 
actually reduces to a linear one. To prove the linearity, 
expand equation 22 to give

J-i

_ _/,, _v W9^X x;/

ax -0

(26)

(27)

(28)

Similarly, recognizing that 
equation 25 that

^-t-^ and r3=r4, we obtain from

(29)

at dt 3  - -j  -(t. 1-)/2
817 di; 4 1 ' (30)

(31)

The derivative of the mapping between local and 
global coordinates is given by the Jacobian matrix

J J

Similarly, expanding equation 23 yields

.J j

(24)

( 25 )

J-l

This completes the proof of linearity.

Derivatives associated with the mapping between 
local and global coordinates, equations 22 and 23 or 24 and 
25, are needed throughout processing. Partial derivatives of 
x and t with respect to £ and T| can be obtained formally 
from either pair of equations by substituting the appropriate 
derivatives from equations 12 through 17, or equations 18 
through 21. Because of the rectangular geometry of the 
global element, however, the derivatives can be even more 
simply represented. Recognizing that x^x4 and X2=x3, 
equation 24 yields

ax ax

at at

Using the chain rule for differentiation yields

(32)

N.
__
a»?

rdN . dN .-,
-[^ a^\ J - < 33)

where we use the same notation Nj for the shape function as 
a function of local coordinates (^,T|) or global coordinates 
(x,t), the distinction being made by context. Nj represents 
either the ;th shape function Nf or Nj. Inversely to equation 
33, we have

aw. atf. _,

where the inverse Jacobian matrix J"1 represents, in 
to equation 32,

ax at

dx dt

(34)

(35)

Description of the Method of Characteristics Applied to Streamflow Modeling



1
FT

at
at?

_ £t

ax'
" at?

ax

The inverse Jacobian matrix is calculated by taking the 
matrix inverse of J, which is particularly simple in two 
dimensions:

(36)

|J| is the determinant of the Jacobian matrix, which by 
equations 26 to 31 reduces here to

At/4. (37)

Global first derivatives of shape functions with 
respect to x and t are thus obtained from equation 34, which 
relates global derivatives to local derivatives with respect to 
£ and r\ calculated from equations 12 to 21, and given by =d-t?)/4

(47)

(48)

(49)

(50)

(51)

'(-l+2Od+t?)/4

(38)

(39)

(40)

(41)

(42)

=(l+t?)/4 (52)

(53)

(54)

(55)

(56)

_
a (43)

(44)

(45)

(46)

'2
(57)

Global second derivatives of the shape functions are 
required also. These are obtained by differentiating equation 
34, making use of the chain rule for differentiation. Second 
partial derivatives with respect to time t are not actually 
used in the procedure, but are included for completeness; 
the second ^-derivatives are all zero anyway, because of the 
linear time dependence. In the general case, we obtain
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ax ax
Inserting equations 61, 28, and 31 into equations 58, 59, 
and 60 reduces the second partial derivatives for the special 
element geometry considered here to

a,

a*/ ax ax

aw. .2. aw. a 2 
 ill +  I LJL ae , 2 + 317 . 2 ax ax

aw 2

at

at at

aw 
+ a^

at

(58)

<59)

1 Si M , fae a» M
2 ax at a$ aiy|ax at at ax

ax

2aw.

2aw.
at ax

ar 

.2,

2aw
dx at

(62)

(63)

(64)

The second partial derivatives of Nj with respect to local 
coordinates ^ and i\ are obtained by differentiating 
equations 38 to 57 to yield

(65)

af
d+<j)/2 (66)

(67)

4.    JL ±-lL Z-1L 4.  2 ax at
!%_

ax at ' 317 ax at '

(60)

where once again Nj represents either Nj or Afp. Because the 
transformation between global and local coordinates is 
linear, and because, for the special case being considered 
here, it is also separable (£> is a function of A: alone, and TJ is 
a function of t alone, by equations 26 and 29), we have

a 2! 
ax2 2 2 : 3tz

11 LI2 _ 
2 " « 2 ,2

a2*?

-(-1+2^/4

(68)

 0 (69)

(70)

» _ _ ax at ax at ax at ( 61 > a?i?" -< 1+2^/4 (71 >
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a.; =(-l+2O/4

a 2^

a 2*?

a,?'

drj

a??

.I. I
dn " 4

(72)

(73)

(74)

(75)

=0 (76)

=0 (77)

(78)

(79)

Approximations of channel parameters within the 
element are carried out by an independent procedure that 
will be described later in the development of the method. 
(See the section "Interpolation of Channel Parameters.") 
The approximation provides values within the elements, and 
variation across the elements, for channel parameters A, B, 
P, n, and zb. These parameters are specified as input at 
cross-section locations that need not necessarily correspond 
to nodal locations such as 1, 2, 3, 4, 5, and 6 of the 
computational elements.

Characteristics

The characteristics are approximated piecewise by 
straight-line segments ab and be, or de and ef(fig. 3). The 
characteristics initiate at points a and d, and are projected 
backwards according to equations 7. The slope on each 
segment is averaged from the slopes given by the 
appropriate one of the equations 7 (upper or lower sign) at 
the end points of the segment; for example, at points a and

b for segment ab, or b and c for segment be. Figure 3 shows 
the situation for both subcritical and supercritical flow, as 
well as for transitions between two flow regimes. In figure 
3, the characteristics associated with the upper sign in 
equations 7 are denoted by +, and those associated with the 
lower sign by -.

The numerical process involves iteration, because 
although point a, for example, is at a fixed location, the 
location of point b and the slope of the characteristic 
segment passing through it are both unknown at the outset. 
An initial approximation to the slope for the entire segment 
ab is the slope from the appropriate one of equations 7 
(upper sign, in this case) at point a. This locates an initial 
trial end point b for the segment. Next, the slope of the 
characteristic at point b, from equations 7, is averaged with 
the slope from point a to obtain a new approximation for the 
slope of the segment. The process is repeated until 
convergence of point b is obtained. Then the procedure used 
on segment ab is repeated to track the characteristic through 
the next segment be, with point b taking the place of point 
a and point c replacing point b in the algorithm.

In order to carry out the above "inner iteration" to 
determine the approximating characteristic path, the 
discharge Q and depth h must be known throughout the 
space-time element, and in particular at the nodes 3, 4, and 
6 at the forward1 time (fig. 3). Because these nodal values 
are the quantities we seek to determine with the numerical 
algorithm, we must assume some initial values at the 
forward time to get the process started. These initial values 
for Q and h are taken to be identical to the values at the old 
time; that is, values at nodes 1, 2, and 5 are used as initial 
estimates at nodes 4, 3, and 6, respectively. These estimates 
are improved by an "outer" Newton-Raphson iteration of 
the global system of equations to be described later in the 
section "System of Equations for the Finite Element 
Solution." (See equation 85.)

The number of segments ab, be, and so on is 
adjustable, but two appear to be sufficient for the numerical 
procedure being described. The segmented approximating 
path is restricted to a topological "neighborhood of 
restriction" lying within the element. In a manner analogous 
to the forward time-weighting of the 4-point implicit 
numerical procedure (see, for example, Cunge and others, 
1980, p. 65), a parameter 0e [0,1] is used to set the base of 
the neighborhood of restriction at local time coordinate 
T|=l-20. By an additional parameter x» the characteristic 
starting at point a (= element node 3) is restricted to the 
right of local coordinate ^=l-2x, and the characteristic 
starting at point d (= element node 4) is restricted to the left 
of 4=-l+2x. Two neighborhoods of restriction are defined 
by this procedure, namely 3ABC for characteristic abc, and

^he terms "forward" and "new" are used to indicate the time level 
of nodes 3, 4, and 6; "old" denotes the time level of nodes 1, 2, and 5.
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Global element - subcritical case 

A 6 D

Global element - supercritical case

Local element - subcritical case Local element - supercritical case 

4 A 6 D 3

Transition - Subcritical to supercritical to subcritical flow across six global elements 

Subcritical -^_ Supercritical v .Subcritical

Figure 3. Approximation of characteristic paths. Dashed lines indicate the neighborhoods of restriction.

4DEF for characteristic def (fig. 3). In a manner somewhat 
similar to the choice of Galerkin weighting by shape 
functions that are unity at nodes 3 and 4 and that fall to zero 
at other nodes, these neighborhoods provide a weighting of 
the numerical scheme closer to the location of the unknown 
values of discharge Q and water depth h at nodes 3 and 4. 
The neighborhoods of restriction thus specify a form of 
subdomain collocation. (See, for example, Zienkiewicz, 
1977, p. 50.) The effect of the parameters % and 9 will be 
demonstrated after examples applying the model are intro­ 
duced later in the report. (See the section "Example 2.")

The lengths of segments such as ab and be are chosen 
by the following procedure, which prevents the segments 
from becoming too long either horizontally or vertically. 
Divide the interval T)c to T) 3 , that is, from the base to top of

the neighborhood 3ABC, into equal parts AT| (two parts, for 
three characteristic nodal points shown in the figure). Also 
divide the interval £,A to ^3 into equal parts A^ (two parts, for 
the case in fig. 3). The local time interval T)a-T)6 along 
segment ab is equal to AT), unless this choice of time extent 
for ab would make the corresponding space interval 
l^a~4b' more than A^. The latter situation occurs if the 
time steps are large enough that the slope of the charac­ 
teristic in local coordinates is mild. If A^ is exceeded 
using the full AT| time interval, the segment ab of the 
approximation to the characteristic is truncated so that 
l^a~4bl equals A^, in which case T)a-T)6 will be less than 
AT). This procedure is then repeated for the continuing 
segment be (and possibly more segments) until the path 
intersects the neighborhood of restriction, where the path is
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truncated. The procedure occasionally can result in more 
than the minimum number of segments (two, in the case of 
fig. 3) being required to terminate on the boundary of the 
neighborhood of restriction. Such special cases occur rarely 
when the procedure just described switches between using 
At| and A^ to determine the length of segments within the 
approximating path.

In order to approximate numerically that equations 8 
are satisfied along the corresponding characteristics of 
equations 7, we form the following weighted integral along 
the characteristics:

1 J 'J*r.

 U2 3A (80)
The path of the characteristic is thus parameterized in terms 
of local time coordinate t|, and the limits of integration 
range from r^ at the node j, backwards in time along the 
positive (+) or negative (-) characteristic to local coordinate 
Tlja-. Node j is restricted to one of the upper comers of the 
element, namely node 3 or 4, and the superscript v refers to 
the vertex formed at node j by the space-time curves of 
dependence that follow the positive and negative charac­ 
teristics backwards in time from the node. The characteristic 
can exit its neighborhood of restriction at the neighbor­ 
hood's base BC or FE; in this case rj^ 1-20. The exit can 
also be through the vertical sides AB or DE, or (rarely) 
through vertical sides 3C or 4F, and in this case Tj^. is 
between 1-20 and +1. In any case, the integral in equation 
80 is restricted to that part of the path of the characteristic 
that lies totally within the neighborhood of restriction, 
which in turn lies within the element. The superscript / 
refers to the intercept of the characteristic with the boundary 
of the neighborhood of restriction. The function W^ 
specifies the weighting; here, W^ is chosen to be unity 
along the entire positive or negative characteristic passing 
through node y. Note that when considered in the context of 
the classical two-dimensional weighted integral of the finite 
element method, use of a one-dimensional integration path 
following the characteristic corresponds to use of a 
restricted measure, which is further restricted by truncation 
of the path to lie within the neighborhood of restriction.

Addition of Continuity Equation for Mass 
Conservation

As indicated in the introduction, mass is not 
conserved in general with the standard numerical

implementation of the method of characteristics that relies 
on equations 7 alone. The equations 8 are formally equiva­ 
lent to the pair of equations 1 and 2. This equivalence is 
true, however, only if the correspondence is enforced at 
every point of the space-time continuum. Because enforce­ 
ment over the continuum is impossible in numerical 
approximation with a finite number of nodes, nonconserva- 
tion can result, even with quadratic or cubic interpolation of 
all associated variables. To ensure the correspondence of 
equations 8 to equations 1 and 2, an additional equation that 
specifies mass conservation is enforced. The equation is 
provided by integrating continuity equation 1 over the local 
space-time element to obtain

1 1

J Hf
-1 -1

(81)

where |J| is the determinant of the Jacobian matrix J 
between the global and local space-time elements from 
equation 37.

The addition of this equation in each element uses the 
degree of freedom that was provided by specifying quad­ 
ratic instead of linear variation with distance for water depth 
h in equation 11.

DESCRIPTION OF THE EQUATIONS FOR 
NUMERICAL SOLUTION

System of Equations for the Finite Element 
Solution

A finite element solution is obtained by requiring, 
from equations 80 and 81, that

and

FJ±(Q,h)=0

F (Q,h)-0,
C

(82)

(83)

where Q and h are given by their finite element 
approximations (equations 10 and 11). Because the inte­ 
grands in equations 80 and 81 are nonlinear functions of the 
nodal unknowns a$ and a%, Newton-Raphson iteration on 
the approximating linear system is used. Let aG=column 
vector of nodal discharges, aA=column vector of nodal water 
depths, and ar= ((aG)r,(aA)r) = row vector of dependent 
nodal variables. (The superscript T indicates transpose.) Let 
F(a) = column vector of integrals FAt(aG,a'l)=F/.t(<2, h) along 
characteristics from equation 80, and integrals Fc(aQ,ah)=
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over the space-time element from equation 81. (F^ 
and Fc are scalar-valued integrodifferential operators on 
functions Q and h, whereas Fj± and Fc are regarded as 
functions of the nodal variables aG and aA.) In vector 
notation, the nonlinear system of equations to solve is

F(a)-0,

and the approximating linear system is

(84)

-L A

fl

dx w dx 3£ dt H arl

F(a)+F'(a)Sa«0 (85)

In equation 85, F'(a) is a matrix with elements of the
A A A A

3F, aF* 3FC 3FC 
form -r-j, -, -, and -z  r , and oa is a column vector of

variations of the nodal variables from the trial values given 
by vector a.

Equations 84 and 85 are treated as systems on 
individual finite elements during their formation, but can be 
assembled into global systems by collecting the equations 
from all elements in a river reach. For an N-element reach, 
the global form of equation 84 or 85 includes 2N+1 
unknowns h, and N+l unknowns Q, for a total of 3N+2 
unknowns. Calculations for this reach would include 2N 
equations derived from equation 82, N equations derived 
from equation 83, and 2 boundary conditions specified at 
the upper and (or) lower ends of the reach, for a total of 
3N+2 equations, making the global system corresponding to 
equation 84 or 85 determinate.

General Form of Partial Derivatives for 
Equations Along Characteristics

Computation of the partial derivatives is carried out in 
the standard 2x2 finite element in independent variables 
(4,T]). Let the part of the integrand between the brackets in 
equation 80 be denoted by Fg±(aQ,ahjc,t)=[Fg±(Q,h)](x,t), 
where Fg± is a differential operator onAfunctions Q and h in 
independent variables x and t, and F^ is regarded as a 
function of nodal variables ac, aA, x, and t. Note that the 
integral of equation 80 is dependent on the path of the 
characteristic as given by equations 7, and therefore, for any 
time t, the space coordinate x at which integrand F^ is 
evaluated also depends on nodal variables aQ and a*. Then

A A

the partial derivatives -^-Q,  5- appearing in F'(a) are 
00% ddk

given by

J
"j±

v 
J±

g± dx
*f+

In equation 86, a^ represents either a nodal discharge ajp or 
a nodal water depth ahk. The first term in the equation is the 
main variation, obtained under the assumption of a fixed 
path for the characteristic. The second and third terms take 
into account the variation of the path of the characteristic, 
but under the assumption of a fixed intercept TI^. with the 
element boundary. The third term is zero under the 
assumption of a constant weighting function that is taken 
here. The fourth term represents the contribution due to the 
variation of the integration limit T^. If the path of the 
characteristic is through the bottom of the neighborhood of 
restriction of figure 3, where Tij±=l-20 and ^   (-1,1), this 
term is zero. In the linear iteration defined by equation 85, 
its contribution is omitted even when the exit of the 
characteristic path is through the vertical sides AB, DE, 3C, 
or 4F. Note that for the exact solution of the system of 
equations 7 and 8, the integrand in equation 80 is identically 
zero along characteristics, regardless of the integration 
limits T^,. and T^ The choice of limits and interpolations for 
the variables of the integrand only serve to define the 
numerical approximation of the solution. The variation of 
the characteristic path with 8a is treated as confined 
between fixed r\ coordinates during each iteration. (See 
fig. 4.) Then the improved approximation to the charac­ 
teristic path determined at the beginning of the next iteration 
is again truncated to lie within the appropriate neighborhood 
of restriction. This procedure avoids computational diffi­ 
culties, especially with near-vertical characteristic paths 
encountered close to critical flow, and still provides 
sufficient direction in nodal space a, through equation 85,
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Figure 4. Variation of characteristic paths.

for convergence to the solution of the nonlinear system, 
equation 84.

The integrals along characteristics in equations 80 
and 86 are carried out numerically by trapezoidal rule 
integration along the piecewise linear approximation of the 
characteristic path in the local space-time element. If 7±(^,r|) 
represents one of the integrands in equation 80 or 86, the 
numerical quadrature is

I
max

£-2

where ( 
path, Arj 
segment,

(87)

is a node of the approximating characteristic 
-ri^! is the local time increment for the 

, and 11=.

Partial Derivatives with Characteristic 
Path Fixed

Let F denote the path of the characteristic. The partial 
derivatives corresponding to the first term in equation 86, 
under the assumption of a fixed characteristic path, are

*-  k J fixed

1 

f J±I["^ ~^£ 1^
J v \[BX Va*| 3 o

(88)

and

8F.

k J fixed
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a*. J

In deriving equations 88 and 89, the following 
expressions for total time derivatives along the charac­ 
teristics were used:

If

h "x dh dh
at

The friction slope in equations 88 and 89 is specified 
by Manning's relation Sfo, modified by a steep-slope factor 
O (Jarrett, 1984; Glass and others, 1987):

S -S *, (92)

where
Factor O is a function of the water surface slope Sw.

0 2.208

The friction slope reduces to Sfo for mild slopes, because 
O=l if S^O.002. More detail" about the factor O for 
high-gradient streams is given below, in the section "Steep- 
Slope Factor." In equation 93, n is Manning's coefficient, 
and P is the wetted perimeter. The variables in equations 88 
and 89 are expressed in finite element formulation as 
follows. From equation 10, giving the linear combination of 
shape functions for discharge Q, we obtain

(94)

at at
J-i

«>
Because they will be needed in the next section, 

which details the second term in equation 86, we also have 
the following partial derivatives with respect to river 
coordinate x:

<»>

The second partial derivative in equation 99 is zero, 
by equations 62 and 76, because the shape functions Nf are 
bilinear.

From equation 11, giving the linear combination of 
shape functions for water depth h, we obtain

dh
da

ax ax j 
J-i

ah
ax (103)

ax ax 
J-i

it

da.,

"
ax

a fah
ak

fahlM' at (105)
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Again, in anticipation of derivatives needed in the second 
term of equation 86, we have ap ap dh (114)

a (ah\ \° "j 
axlaxj I 2

J
1 VA ~*-

3 H. \ *y±
axlatj Z__

h
a .

h*j

(106)

(107)

J-l
We obtain partial derivatives of channel parameters 

A, 5, P, and n with respect to the nodal variables as follows. 
In a manner similar to equation 3 for cross-sectional area, 
we express the top width, wetted perimeter, and Manning's 
coefficient in the functional forms

JB(x,t)-JB (x,h(x,t))

P(x,t)-P

n(x,t)-n (x,h(x,t))

(108)

(109)

(110)

Note that although Manning's n can be related to 
other quantities such as discharge, the most typical 
implementation in practice is to have it vary along the 
stream. Practiced observers thus make estimates of channel 
roughness at various stream locations. At such data cross 
sections, they might also specify the coefficient directly as 
a function of water depth, or estimate its values across the 
width of the stream. The latter case can be converted 
approximately to a depth-dependent specification by one of 
the "composite roughness" formulas. (See Chow, 1959, 
p. 136-140, for example.) We restrict the dependence of 
Manning's coefficient to that given by equation 110.

Then the partial derivatives are

dP 8n 4
dA

ak

*»l
3A*

ah

as
, h 8ak

ak

ah
 4

*dB
dh

ak

-B dh

dh

 4

(111)

(112)

(113)

dn dn dh 
  h " dh   1

(115)

a_ (8A ] _ a_
da

Max dh
dA
dx

dh
. h

d (dA }dh dB dh ,,,-.
axlarjTh - aT Th (116)ax h dak

dA (117)

For use in the second term of equation 86, partial 
derivatives of channel parameters B, P, and n with respect to 
x are similar to equation 4 for the ^-derivative of area A:

(118)

(119)

(120)

The partial derivatives of A*, B*, P*, and n* with 
respect to h and x will be described later in the section 
"Interpolation of Channel Parameters."

Partial derivatives of the average velocity

dB
dx

dPdx "

dn
dx

ax '

*ar*
3x

an*,
ax '

as* ah
ah dx

dP* dh 
dh dx

dn* dh
dh dx

u-Q/A

with respect to nodal variables are given by

au au aQ i aQ
Q Q aQ a Q"*A 0 
da, da* da,

du _ du dA _ _ g_ dA

da,
dA h 

dak

(121)

(122)

(123)
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Again in anticipation of describing the second term in 
equation 86, the partial derivative of the average velocity 
with respect to river distance is

The partial derivatives of area A times the friction 
slope Sf=Sfo® are given by

n2| Q|p4/3

dx " dQ dx * dA dx

_ i 5Q _ g_ 3A
A 9x ^2 ax ' (124) A

Partial derivatives for the critical speed

c=JgA/B (125)

with respect to nodal variables, and with respect to x, are 
given by

dc o ci?r\Q -*u v.JL^f>;aal
dc dc dA dc dB
dah 9A dah dB dah 

- c dA c dB M?7^
2A * h 2B a h U^ /;

8Q " 3Q " 2.208 A7/ 

a(A5f) ^ f0 (ir- ) 7/3
dA dA f A

a(A5 ) d(ASf }
a? ~ * dp " (A:7f ) P

dn dn f n

The dependence of ASf on water surface slope 
the steep-slope factor O will be discussed in 
"Steep-Slope Factor."

(132)

(133)

(134)

(135)

are

dc dc dA dc dB 
dx " dA dx dB dx

c dA c dB 
2A dx 2B dx '

Partial Derivatives Due to Translation of the 
Characteristic Path

The second term in equation 86 that arises because of 
(128 ) variation in the path of the characteristic depends on partial

derivatives of F^ with respect to river coordinate x: 
Partial derivatives for the characteristic slope Xt-=M±c

± 3u

3*2k k

(129)

dx± du
  da

_ 
da

dx

dx
± du 

dx

dc

a*\

ac ax *

(130)

(131)

Partial derivatives of the opposite characteristic slope 
x^=u+c are given by expressions similar to equations 129, 
130, and 131, but with the plus and minus signs 
interchanged.

[ ^ _-v » ' ~~ j. I ^Oh i   
ax Vaxjax + [ ± 9. a*

]
f* 

^^»    T-JU I 

L

+ \S

g

+ \g

9A

+ -:

dP \dx r dn lax

la
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_u2]a_[3/] + L
I OX I 0«7C I I

_J V J L. as
35

dx

(136)

In deriving equation 136, we have assumed that 
lateral inflow q and its velocity component uq in the 
direction x are both specified as piecewise constant func­ 
tions, so that the derivatives of these quantities with respect 
to x are zero except at a finite number of points. Equality to 
zero almost everywhere is sufficient because the derivatives 
in equation 136 appear under the integral sign in equation 
86.

The second term in equation 86 also contains the 
factor dfydcifr which describes the variation of the path of 
the characteristic with changes in the nodal variables. To 
arrive at an expression for this factor, let ^ be the total r\ 
derivative along the characteristic in local coordinates, 
corresponding to Jc± in global coordinates. Note that 4b l& a 
field of characteristic directions in local coordinates ^ and 
T|, which is dependent on a% and a% as well. Integrating 
along a characteristic yields ^ as a function of T|, where ^ is 
also dependent on the nodal variables a% and ahk:

v r:-T+
«J

(137)

The partial derivative with respect to nodal variable ak, 
representing either ajpor ahk, is

da, da. (138)

The first term on the right side of equation 138 is zero 
because the location of the vertex is fixed at one of the 
upper corners of the element. The partial derivatives 
appearing in the integrals are calculated as follows: The 
relation between the local and global field of characteristic 
directions is given by

^± -± d^ 

and from this we obtain

(139)

da.
(140)

and

^± dx
dx

dx

dx

^ "v f '
±[dt > dxjdx   5_|dt . dx

1 I * / * *. I * A   ^t i^l 'rr^T / j A,± dxdri

(141)

The partial derivative with respect to x in the last term of 
equation 141 is zero because the mapping between global 
and local elements is linear. Equation 141 thus reduces to

dx

dx
± dt 

dr, (142)

The calculation of equation 138 is carried out by 
numerical quadrature over each segment of the piecewise- 
linear approximation, starting at the vertex (£>v,r\ v). On each 
segment ^ef^^y, riefTV^TiJ, the appropriate inte­ 
gral to approximate numerically is similar to equation 138:

da,

a*

The notation \ i is used to indicate evaluation 
on the characteristic with local coordinates 
Ijj.j indicates evaluation at point (^_I ,TI^_ 
trapezoidal rule approximation to the integral 
side yields

(143)

at the point 
(^,1^), and 
I ). Using a 
on the right

_ 8|_
2-1

A, ± ae

M!!±
2 ds.

(144)
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where ATJ=T| -TJ _j. Note that d^/dak\ £ appears on both 
sides of equation 144. Collecting these terms gives

i-fa
_i

da,

*L-

£-1

2 da, (145)

To start the process, note that the first node is a vertex at an 
upper corner of the element, so that

da t
=0. (146)

t forje=2, ...,Equation 145 then iteratively gives
je wax.

Equation 145 is not a good approximation if

1 - 9 57= ***>- < 147 >
/ 05 X,

A real application that would satisfy equation 147 appears 
unlikely, but an alternate numerical quadrature for equation 
143 is nevertheless included to treat this case. For numerical 
reasons, bound the expression on the left side of equation 
147 away from zero by a small amount. Use equation 145 if

i _ M_:=
2 ae £0.001; (148)

Then, approximate integral 143 by

« *L-

*ri
£-1

'JB-]
da

+ ,,
o da (151)

Divide the interval fn,t_ 1 ,'nj into m subintervals, where m 
is chosen to satisfy

ae SI. (152)

Require also that m>2. Further, define

~ . , * m
f »   ! (153)\/

Using the same approximations, equations 149 and 150, 
which apply to the overall segment [Tl^/nJ, the restric­ 
tion of equation 151 to the ith subinterval is

o ~ SA. 
£,i k £,i-1

1o , L
  L ., , , By the trapezoidal rule,

otherwise use the following numerical quadrature. First, 
define

£-1

£-1

(149)

(150)

da. da, JB.i-1 m dak

(i55)( }

Noting that again d^/dak\ t<i appears on both sides of 
equation 155, and collecting terms yields
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*L- '1

(161)

Continuing,

~~

- 1 - =* 
IL 2m 2m 3| 3a

,-1

Define

2m

2m

Then equation 156 can be written

ic .8,1-1

a
-1

m

Sequentially form

3a,

R da. Jt,m k

as follows: since Tj^o^je-i, we have

,i-l

1 _ M _!± ^2 _^ Q56) 
1 2m 3£ I m 3afc ' UDb;

*

m 3a

(158)
L J f_

Continuing further to i=m, we determine

(160)

+ ... +

Noting that

m-1 
Y , ~1
/ \ ̂ ^

i-0

+ l! ±
J m

Q A

-! 

(162)

(163)
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a closed form expression for equation 163 is

da, ,8-1

+ a (165)

Equation 165 is the numerical quadrature used when 
equation 148 indicates that equation 145 should not be used.

Partial Derivatives for the Continuity 
Equation

The partial derivatives with respect to the nodal 
variables for the continuity integral, equation 81, are given 
by

8F -tt

(167)

The integrals in equations 81, 166, and 167 are 
approximated numerically by two-point Gaussian quadra­ 
ture in the local space-time element. If Ic(x,f) represents one 
of the integrands, excluding the determinant |J| of the 
Jacobian matrix, the Gaussian quadrature is

1 1r r 
j _ j_j _i

2J
-0. 57735027, ,7=0

+ 2
. 57735027, < 168 >

INTERPOLATION OF CHANNEL 
PARAMETERS

Channel geometry is assumed to be specified at data 
cross sections along the length of the river. For each of these 
sections, channel width, wetted perimeter, and Manning's 
"H" are specified as functions of elevation. The locations of 
the data cross sections need not correspond to the locations 
of the computational cross sections. This independence of 
the two types of cross sections allows computational cross 
sections to be located and concentrated where they are most 
beneficial in describing the dynamics of a particular 
problem.

For gentle slopes, the choice of a scheme to inter­ 
polate channel geometry is easy: linear interpolation will 
suffice. As the slope steepens, however, solution insta­ 
bilities may arise from discontinuities in derivatives 9/9z of 
channel parameters within a cross section, or in derivatives 
9/9* along the channel length, as has been noted by Franz 
(1976), among others. For this reason, Hermitian inter­ 
polations are used to provide continuously differentiable 
approximations of channel parameters.

The Hermitian interpolation is carried out sequen­ 
tially, first in elevation within cross sections, and then along 
the channel length. This sequential processing is used 
because channel geometry is most conveniently specified 
with variable elevation increments Az between data 
specifications at elevations zk. These elevations are chosen 
during data collection, depending on the geometry of the 
particular cross section, and vary from one section to the 
next. It is, therefore, not convenient to try to match Az 
segments from one cross section to the next, as would be 
done in a bi-Hermitian approach in jtxz space.

The sequential interpolation process is as follows. 
Cross sections that surround the stream coordinate x where 
the interpolation is desired are first identified. Thus, let x} , 
x2, ..., xn denote the stream coordinates at which data are 
specified. Choose the smallest x>x2 so mat x<xj or xj=xn- 
The cross sections at Xj_^ and Xj are the nearest neighbors for 
the desired location x, and the cross sections at Xj_2 and xj+ i 
are the next-nearest neighbors. (If xj=x2, then Xj_2 cannot be 
formed, and similarly ifx=xn, then xj+} does not correspond 
to a defined cross section. The method to be described in 
this section will make allowance for these special cases.) At 
each of these four data cross sections, construct inter­ 
polations of channel parameters in water depth h. Focusing 
attention on one of these cross sections, let z]t z2,..., zm be 
the elevations at the cross section at which channel 
parameters are specified, where zh=z^ is the bottom, or 
thalweg, elevation of this cross section. Recognizing that 
water surface elevation z is related to water depth h simply 
by z=zb+h, define depth nodes hk=zk-zb corresponding to the 
elevations where data are given. In a manner similar to 
choosing near-neighbors for x, choose the smallest hk>h2 so
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that h<hk or hk=hm. The nearest neighbors to h are hk_l and 
hk, and the next-nearest neighbors are hk_2 and hk+l . Again, 
one of the next-nearest neighbors will not be defined for the 
special cases hk=h2 and hk=hm, and how to deal with these 
special cases will be treated in the discussion in this section. 

The Hermitian interpolation is defined on the stand­ 
ard interval [-1,1], with independent variable £, using the 
following linear mapping from global coordinate

r - i, (169)

(175)

In some cases, extrapolation above the highest 
defined data depth hm may be required. Extrapolation by 
equation 171 using equations 172 to 175 directly is often not 
satisfactory in practice; rather, define an extrapolation based 
on the subinterval [/zw_i,/iw] to be linear, and continuously 
differentiable at h=hm, as follows:

If £> l,then

tf=0 (176)

implying that

dh - (170)

The Hermitian interpolations in water depth h, or, 
equivalently, elevation z=h+zb, at the four neighboring cross 
sections are specified by

.^ , j+r

dh
(x., ,h. . j+r k-

lp dr dh .^ , j+r
(171)

where r = -2, -1,0, or 1 as appropriate, to indicate the cross 
section being considered. There are similar expressions for 
P* and n*. (See equations 108, 109, and 110.) (The m and 
the p in the subscripts mnemonically stand for "minus" and 
"plus".) The basis functions \j/lw and \j/lp multiply nodal 
derivatives 8/8£ in the local one-dimensional element, and 
thus require the factor dh/d^ to convert from global partial 
derivatives with respect to h to local partial derivatives with 
respect to £. The Hermitian basis functions are given by

(172)

(173)

V1

1m

'i IP
 r-i.

(177)

(178)

(179)

The definitions of \|/ in equations 172 to 179, used for 
^-interpolation, will also be used to give similar definitions 
for ̂ -interpolation. For depths, only extrapolation above the 
highest specified depth can be contemplated. However, 
extrapolations beyond both the first and last cross sections 
of the reach are possible in the ^-direction, although such 
extrapolations are rarely needed. Therefore, to allow 
reference for jc-extrapolation beyond the first cross section, 
the lower-margin extrapolation using the depth notation \\f is 
included for completeness. Define an extrapolation that is 
based on the first subinterval [h^f^] to be linear, and 
continuously differentiable at h=hi, as follows:

If £<-l, then

Om

v°
(180)

(181)

(182)

(183)

To calculate the cross-sectional area below the water 
surface, form the integral

.^ j+r
,*) = ! 

J 0
B (xj+r ,h)dh. (184)

(r+D/4
Sum the latter integral over the depth nodes hk at which data 

(174) are specified:
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i

J, 5 (x h)dfa 
J

7-2

fJfc
B (x ,h)dh.

ic-l
(185)

Note that the last integral in equation 185 involves the 
selected interpolating interval he [hk_j,hk]. This integral can 
be written in terms of the Hermitian expansion of the top 
width B*, using equation 171, as/*  

hk-l

B*(x

+*, dh dB

df
ah j+r'"k-l'

dhBB dh

fr dp dh
J.! o^ <*r

f i,. dp |p 
J_]_ °P df

fj
(186)

The last four integrals of the Hermitian basis functions in 
equations 186 can easily be calculated from the basis 
function definitions, equations 172 to 175:

(f4-6f2+8f+13)/16 (187)

(188)

fJ -

fJ -
(189)

(190)

For the special case of extrapolation to h>hm, the integrals 
are as follows: 

If £>1, then

- 1 (191)

(192)

fj (193)

Jl fJ l vr

T pC A A

- i + (f-Ddf 
^ Jl

(194)
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The -1/3 in equation 194 comes from the evaluation of (x,h) will be derived after the ^-interpolation is discussed.)
equation 190 for £=1. For the special case of extrapolation 
to h<hlt the integrals are as follows: 

If £<-!, then

r. * - (195)

In the last two terms of equation 198, a factor cKjdh has 
cancelled a factor dh/dt, of equation 171. The derivatives of 
the Hermitian basis functions that appear in equation 198 
are given by

Om - 3(r-i)(r+D/4 (199)

k f+1 (196)

(197)

In equation 185, the integrals within the summation 
are similar to the last integral in the equation, except that the 
integration is the complete depth range of lower elements 
he[hy_iJi^, y=2, ..., £-1, in the cross section. These are 
computed by use of an expression similar to equation 186, 
but with £=1, and with [y-l,y] for y=2, ..., k-\ replacing 
[h-l,k]. These integrals can be calculated at the beginning 
of the modeling for the complete set of depths at each cross 
section and stored for later use in equation 185.

Partial derivatives of the channel parameters with 
respect to depth are also needed. At the cross sections Xj_2, 
Xj_i, Xj, and xj+1 , the derivatives are obtained by differen­ 
tiating equation 171 to yield

ar 3(r+i)(-r+D/4

1m

(200)

(2oi)

(202)

For the special case of extrapolation to h>hm, the derivatives 
are as follows: 

If £>1, then

ar ar ar

IP _ i ar

- 0 (203)

(204)

For the special case of extrapolation to h<hly the derivatives 
are as follows:

If £<-!, then

dB
dh ar dh ar ar (205)

, j+r k

Izn
a

- i. (206)

ah

ah

(x., ,h. v j+r' k-

.^ ,, j+r' k

with similar expressions for P* and n*. (The partial 
derivatives with respect to h evaluated at an arbitrary point

The partial derivatives of the channel parameters with 
respect to h at the nodes £=±1 of the element appear in the 
expansions of equations 171, 186, and 198, and are 
approximated as

(198) dB_
h '

" K(X /+r'V 
L J r *

* 
- B (x   w] .-. 

Ic k- (207)
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3B 
dh

* 
B (x < 208 >

interpolation of channel geometry being defined here from 
the local computational space-time element of equations 22 
and 23 that was defined earlier.) The linear transformation 
between S and x is similar to the mapping between £ and z:

2(x-x
- 1 § (210)

with similar expressions for P* and n*. In the most common 
situation that occurs when fc*2, set subscript increment p=2. 
To treat the special case of £=2, that is, the lowest element 
in the cross section, use p=l. Similarly, for the usual case 
when kftn, set o=l. In the special case when k-m at the 
uppermost defined elevation of the cross section, set o=0. 

Note that B*(xj+r,h\ P*(xj+r,h), n*(xj+rth\

equations 171 and 198, are continuous functions of h. This
boundaries h, becauseis true even

h ,h

across element

and T5lH<v dh \(xj h ^ ,h) are defined the same^ j+r, k_j) j+r, k

way on both neighboring elements, and although dtydh is 
discontinuous across boundaries, \j/1/H, \j/ lp, 3vj/om/^C» and 

are all zero at £=±1. Note also that A*(xj+r,h) and

'^' defined by equation 184, are

continuous functions of h.
Having defined interpolated values of the channel 

parameters at water depth h, at the neighboring and near- 
neighboring cross sections Xj_2, Xj_i, xjt and xj+i, we now 
proceed to the Hermitian interpolation in river coordinate x. 
The Hermitian expansion is given by

(x,h) n B (x. . ,h) + ^ Om v j-1' y r

*
dx 35

1m dE dx

a
dx dB

IP ds ax

<*,-!'

h)

h)

(209)

with similar expressions for A*, /**, and n*. Channel bottom 
elevation z6 at river coordinate x is interpolated in the same 
manner, but there is no dependence on water depth h. The 
Hermitian basis functions §Qm, §Qp, § lm, and <j) lp are defined 
in local element HE [-1,1] corresponding to global element 
xe [Xj^jj]. (We use capital Greek letter xi, E, instead of the 
more typically used lower case xi, £» to distinguish the

implying that

d3 
dx (211)

The basis functions themselves are defined by replacing \j/ 
with (j) and £ with S in equations 172 to 183.

Partial derivatives with respect to x are given by

dB

(x

d<f>

3x J' J

^, 

(212)

with similar expressions for partial derivatives with respect 
to x of A*, P* t n*, and zb. In equation 212, the partial 
derivatives of the Hermitian basis functions with respect to 
E are obtained by replacing \j/ with (j) and £ with H in 
equations 199 to 206.

In equations 209 and 212, the nodal values at S=±l of 
the partial derivatives with respect to x are approximated by

8B
(x lf (x s ,h)

(213)

dB 
dx (*,.;

'<X,....*>

(214)

with similar expressions for A*, />*, n*, and zb. In the most 
common situation when j&2, set subscript increment Xp=2. 
For the special case 7=2, that is, the first element in the
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longitudinal profile, use A^l. Similarly, for the usual case 
wheny'^/z, set v=l. In the special case wheny=/z at the last 
element in the longitudinal profile, set v=0.

The functions B*, A*, P*, n*, dfl*/djt, dA*/djt, 
dP*/dx, and d/z*/3.x defined by equations 209 and 212 are 
continuous functions of x and h, and zb and dzfjdx are 
continuous functions of x. This holds true even across 
element boundaries xjt even though dE/dx may be dis­ 
continuous there, because <|> IOT, <|) 1/7, B^o^/dE and 3<|)0p/d5 
are zero at S = ±1, and because the nodal values of the partial 
derivatives with respect to x are defined the same in both 
neighboring elements.

We now derive an expression for the partial deriv­ 
atives of channel parameters with respect to h at any given 
point (x,h), rather than only at cross sections, to which 
equation 198 is restricted. We show that the partial 
derivative of equation 209 with respect to h is consistent 
with the Hermitian expansion of cross-sectional values of 
dB*/dh at Xj_2, Xj_v , Xj, and xj+l using the same equation 209. 
Taking the partial derivative of equation 209 with respect to 
h yields

dB
dh

dB
(x,h) ah

Om ah ah

1m dS

dB
Om 3h

(xjt h)

ah / t.\ /(x.-x. . (x^_A ,h)J /v j j-

3h J-1

ah

lm dH

'Op ah |(xjfh)

dB
Om ah

dE dhdx

- 
1p dE ah

1 
(x.,h)J

dB
ah

, dx a_ f_*
1m dH dl

dx a (dB m (215)

The expression to the right of the last equality in equation 
215 is the jc-interpolation of cross-sectional values of 
3fi*/3/i. The derivation of equation 215 also applies to the 
partial derivative with respect to h of P* and n*.

The definition of cross-sectional area A*(x,h), 
obtained using the interpolation of equation 209 and the 
nodal derivative approximations of equations 213 and 214 
(and using A* in place of B* in each equation), is consistent 
with the integration of width over depth done at coordinate 
x:

A*(x,h) fJ 0
B (x,h)dh. (216)

Proof of equation 216: Expanding the right side of equation 
216, we have

B (x,h)dh
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,. -, ,fc)

-*<

dx dB

dx dB
s ax (x

fh . A A

B (x h)dh
JQ J L

dE

35*

1«>, -

0

j__l'"'J/^J +

*.

A A 
h)dh

 Tn'J dh

.i{J>v
ph ^ A A"| 

- B (x h)dh^/(x-x ) 
JQ J A I J J~A

Om
*

.^ (x s n ,- A

dxf *

- A* (Xj-A' h) ) /(Xj-XJ-A )

3A
dS 3x (x ,h)

*/

dx
E ax (x h>-

This completes the proof of equation 216. From equation 
216 it follows directly that

8A
ah

*
B . (218)

The order of taking partial derivatives of channel 
parameters with respect to jc and h can be interchanged:

a 
aht

. *w
ax~J ax

as
ah

Proof of equation 219: Taking the partial derivatives with 
respect to x of the expansion of dB*/dh from equation 
215 and applying equations 213 and 214 to 3/?*/9/z instead 
of B*, we have

d dB

as
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°vOp dS dl
33 dx 81

as ax si

3$, « ' .

1 as ax 3i

dS dx dh (

1 as dx 3i

1 as [ah ( 

*
dE
dh (a

as [ah < 

*
35 
dh (2

O w A «^-i ^^Oflz uH 3J3
as dx ah (;

d<t>~ _ ..

i (x.,h) 
J

1 J (X h)

fl/

*^ ^ fl* J 1 d-
i J (x h)

«/ 

f 1  \
h JL   if ^

i (x.,h)

:x.,h) 
J

)
df

9ip a rr * f

Oin u5 5B
i dx ah (x.^.h)

O w ^"^^Op dS 3B
1 as dx ah (x.,h)

im a fau I
1 as ah [ax (x._lf h)J 

IP a faB I
+ as ah [ax (x h>J 

*
|3J3 | /oor»\
'l3x 1 1 (x hj

/(x x )
J j-X The last equality follows by equation 212, and the next to

J " the last by equations 213 and 214, applied this time directly 
to B*. This completes the proof of equation 219. By similar 
arguments, the order of differentiation can also be inter- 

[x. ,h) changed for the other channel parameters A*, P*, and n*. 
~* Second partial derivatives of the channel parameters 

with respect to river coordinate x are obtained by differ- 
1 collating equation 212, to yield 
/(Xj-H/~Xj-l} 

j       2

8 2B* 3 *0.fH^ 2»*... ,,
ax2 

V-rh)

*

(x h) as2 LdxJ J"1§

2.
Op(dS| n*x__ t_\ds as 

as dx ah

as2
dS 8B
* ax (x

ds
dx (221)
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with similar expressions for the other channel parameters 
A*, /**, «*, and z6. In equation 221, the second partial 
derivatives of the Hermitian basis functions are obtained by 
replacing \|/ with 0 and £ with E in equations 199 to 202, 
and then differentiating to obtain

32/2 (222)

after equation 9 in Jarrett's paper indicates that water- 
surface slope Sw could be used instead, at least for fairly 
uniform channels. Water-surface slope is used here, in this 
approximate implementation of Jarrett's ideas, and equation 
226 is normalized to S0=0.002 and R0=l feet, to yield

n
(0.002) 0 ' 38 (0.39)f^0 0.16

,0.16
 1 fr
* J Ue

0.38

-33/2 (223)

0.16*,

0.027 (?) R) (227)

(3S-D/2

(33+l)/2

(224)

(225)

A similar substitution and differentiation of equations 
203 to 206 shows that all second partial derivatives of the 
Hermitian basis functions are zero in the special cases of 
extrapolation beyond the first or last elements.

STEEP-SLOPE FACTOR

The factor <E> in equation 92 adjusts the friction slope 
determined by Manning's equation (eq. 93) for steep slopes 
(Jarrett, 1984; Glass and others, 1987). The use of this factor 
is by no means necessary for the proper performance of the 
model. The factor is nevertheless included to provide an 
estimate of friction slope that is, by Jarrett's recent work, 
perhaps better suited to steep rivers. When the model is run, 
this factor can be set to unity, if desired. Factor O is derived 
from equation 9 on page 1,532 of Jarrett's paper, which 
gives Manning's coefficient"«" as a function of slope S and 
hydraulic radius R=A/P:

The purpose here is to implement a steep-slope 
correction to Manning's coefficients specified by more 
traditional estimates of channel roughness. The data 
specification given in the previous section already allows n 
to be a function of water depth, which might conflict with or 
duplicate the factor in equation 227 that is dependent on 
hydraulic radius. The approximation used here is to replace 
the first factor in braces by n, the input, traditional, 
depth-dependent estimate of Manning's coefficient, to yield

5 ^.38 S3 (228)

The notation n is used to distinguish the slope-corrected 
Manning's coefficient from the traditional estimate w. If n 
replaces n in Manning's formula, equation 93, one obtains 
the steep-slope factor O of equation 92, at least in the range 
of slopes between 0.002 and 0.04, for which the Jarrett 
formula is supported by data:

for 0.002 < 5 < 0.04. (229)

n 0.39 (226)

where «y is used to distinguish Manning's "«" computed 
using Jarrett's formula. Equation 226 was derived on the 
basis of data including slopes ranging from 0.002 to 0.04, 
and for hydraulic radii from 0.5 to 7 feet. Although the 
multiple regression used to derive the coefficients in 
equation 226 used S defined as friction slope, the sentence

Extend equation 229 to the full range of slopes by defining 
O to be constant below and above the range specified in 
equation 229, and continuous:

- S
<? 

ffmin\
,2 } '

(230)
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where

£ -1 and 5 =0 rac e

if |SJ < 0.002 (231)

S. -1 and 5 -0.38 rac e

if 0.002 < |S I < 0.04
I t7 ' (232)

0.38

and

if 0.04 £ |S |
I tjr I (233)

Smin"max( l 5J'°- 001)

(234)

In equation 234, the function max indicates the maximum of 
the two values in parentheses, and the function sign=l if 
5VV>0, and -1 otherwise. Sw is replaced by Smin for slopes 
less than 0.001 to avoid division by zero in partial 
derivatives to be defined below; note that Smin^Sw only for 
the case of equation 231, in which Se=0 anyway.

The dependence of ASy-on water slope Sw through the 
factor O can now be calculated:

a(Asf) 
as - 2AS

f S
mm

The use of water-surface slope Sw rather than friction 
slope Sf for the slope S of the steep-slope factor O avoids 
undesirable numerical feedback between the steep-slope 
factor and the friction slope that depends on O. (See 
equation 93.) Indeed, to further minimize numerical noise 
arising from fluctuations in O during the iterations, it is 
helpful to use only an average value of water slope Sw for 
each space-time finite element. The water surface slope at 
any point in the space-time element is given by

dx dx
fl». ah
dx (236)

where the first term on the right side is given by equation 
212 and the second term by equation 102. The first term is 
defined by input channel geometry and does not depend on 
nodal values; the second term depends on nodal values a* of 
water depth h as given in equation 103. The average slope 
Sw is taken to be the slope at (^,Tj)=(0,-l), that is, in the

center of the element in the jc-direction, and at the old time. 
Thus, by equation 103,

as
hZk

(237)

By equations 34, 40, 41, and 43, the right side of the 
equation is zero for &=3, 4, and 6; that is, there is no 
dependence on the nodal values at the new time. This 
nondependence might have been anticipated because Sw is 
based on quantities at T|=-l, that is, on quantities already 
computed, and should not be affected by changes in nodal 
values at the new time level. However, the general 
expression, equation 237, is included for completeness in 
case one wishes to use other evaluation points besides

Also, because the average slope Sw is evaluated at 
fixed location (x(^i\),t(£),r\)) = (jt(0,-l),r(0,-l)) within the 
element, there is no dependence on ^-variation of the 
characteristic path; that is,

dx 0. (238)

MODEL DEMONSTRATIONS AND 
VERIFICATIONS

(235) Example 1

The use of the model was demonstrated by using a 
test river channel whose thalweg profile is given in figure 5 
and table 1. The profile steepness was mild-steep-mild, 
becoming as steep as 13 percent at the middle of the reach 
at river coordinate 25,000 feet. Variable cross-sectional 
geometry was specified at 2,000-foot intervals, as given in 
figure 6 and table 1. The upstream boundary condition was 
a specified discharge hydrograph (fig. 7). Downstream from 
the demonstration reach (0 to 50,000 feet), the profile was 
extended at a slope of 0.1 percent to 60,000 feet, to avoid 
any lower boundary effect in the example reach.

Model space-time elements were assigned a space 
dimension equal to 2,000 feet, so that corner nodes coin­ 
cided with the data cross sections. The downstream bound­ 
ary condition required that the water depth be the same at 
the last computational node (60,000 feet) and the midside 
node of the last element (59,000 feet). A preliminary 
model run established a steady-state condition at a dis­ 
charge of 180 cubic feet per second, corresponding to refer­ 
ence time zero. The upstream input hydrograph (fig. 7)
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Figure 5. Thalweg profiles for the examples. Note the elevation scale change between the graphs.

then changed abruptly from 180 cubic feet per second at thereafter. The time increment A/ was 4 seconds from time
time zero to 1,800 cubic feet per second at time 32 seconds, 0 to 120 minutes. A longer time increment of 24 seconds
and remained constant at 1,800 cubic feet per second was used between 120 minutes and 8 hours in running the
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Table 1. Cross section geometry of the test river channel. 

[See also figures 5 and 6]

River 
coor­ 
dinate 
(feet)

0
2,000
4,000
6,000
8,000

10,000
12,000
14,000
16,000
18,000

20,000
22,000
24,000
26,000
28,000

30,000
32,000
34,000
36,000
38,000

40,000
42,000
44,000
46,000
48,000

50,000
52,000
54,000
56,000
58,000
60,000

Example 1 
thalweg 
elevation 

(feet)

2,112
2,110
2,108
2,104
2,0%

2,080
2,048
1,984
1,888
1,760

1,600
1,408
1,184
928
704

512
352
224
128
64

32
16
8
4
2

0
-2
-4
-6
-8
-10

Example 2 
thalweg 
elevation 
(feet)

58.4
58.0
57.6
56.8
55.6

54.0
52.0
49.6
46.8
43.6

40.0
36.0
31.6
26.8
22.4

18.4
14.8
11.6
8.8
6.4

4.4
2.8
1.6
0.8
0.4

0.0
-0.4
-0.8
-1.2
-1.6
-2.0

Top width, in feet, for given depth, in feet

0

58
7
10
17
13

27
22
35
27
22

23
23
16
21
21

28
27
20
16
15

25
20
19
22
15

15
15
15
15
15
15

1

70
35
35
41
43

44
46
64
51
51

35
41
41
37
39

45
50
41
46
38

37
36
39
40
36

42
42
42
42
42
42

2

84
58
45
50
55

54
56
72
60
68

53
54
48
53
43

53
62
55
52
56

51
46
58
50
49

53
53
53
53
53
53

3

93
71
50
59
62

64
65
82
68
75

62
74
55
60
52

57
70
64
61
61

58
55
68
66
60

66
66
66
66
66
66

4

98
78
60
74
73

73
72
94
77
81

71
82
63
72
70

60
76
72
71
69

72
69
79
75
72

80
80
80
80
80
80

5

102
85
75
81
88

79
76
102
89
89

84
103
70
87
88

72
90
89
80
95

86
84
83
81
81

89
89
89
89
89
89

6

107
91
95
90
94

89
85
109
100
98

93
111
85
100
99

93
105
96
96
108

91
90
92
92
91

98
98
98
98
98
98

7

111
98
111
103
101

105
96
119
112
109

105
122
113
120
107

121
116
99
112
121

96
104
104
105
104

110
110
110
110
110
110

model to a steady-state condition at a discharge of 1,800 
cubic feet per second. A Manning's "«" of 0.030 was used 
throughout. The neighborhoods of restriction were specified 
by setting %=0.5 and 9=0.5. The model's steep-slope factor 
was set to unity for this example, to allow comparison with 
another model and to demonstrate transitions between 
supercritical and subcritical flow. The flow changed from 
subcritical to supercritical near river distance 10,000 feet, 
and back from supercritical to subcritical near 40,000 feet. 
The depth profiles (fig. 8) show the flood wave progressing 
down the river channel.

The steady-state conditions at the start and end of 
modeling were compared with results from the U.S. 
Geological Survey's step-backwater program J635 (Shear­ 
man, 1976; written commun., 1977). River depths obtained 
using J635 are plotted in figure 8 as squares, and show 
excellent agreement with depth-profile curves of the finite- 
element model. (The J635 model can only treat the steady- 
state case.) Mass conservation was demonstrated by finding 
the difference between inflow at the upstream end of the 
reach and outflow at the downstream end, and comparing 
that figure to the change in channel storage within the reach.
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Figure 6 (above and following two pages). Data cross sections of the test river channel, at 2,000-foot intervals, 
for both examples 1 and 2.
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Figure 7. Input discharge hydrographs for the examples. The discharge hydrographs continue at the indicated constant step 
values during times before and after those shown in these graphs.
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The time interval 0 to 60 minutes, during the most dynamic 
part of the flood-wave passage, was chosen for the 
comparison:

Cubic feet

Inflow..... 
-Outflow.

64,540,800 
-6,480,149

Difference.................................... 58,060,651
-Change in channel storage........ -58,131,844

Error............................................ -71,193

The error represents only 0.1 percent of the inflow to the 
reach. In this mass conservation check, the volume in 
channel storage was calculated using two-point Gaussian 
integration, over the length Ax of each computational 
element, of cross-sectional area below the water surface. 
Inflowing and outflowing volumes were calculated by 
trapezoidal-rule time integration of the inflowing and out­ 
flowing discharge hydrographs.

Another indication of mass conservation was pro­ 
vided by the observation that for steady-state discharge, the 
modeled discharges through all cross sections were the 
same. For example, the modeled discharge at 8 hours was 
computed as 1,800.000000 cubic feet per second at every 
cross section. This seemingly simple requirement of con­ 
stant discharge throughout the reach in steady state is one 
that standard implementations of the implicit method of 
characteristics will not satisfy unless the time steps are large 
enough that the characteristics intercept the sides of the 
space-time elements, rather than the bases (fig. 1). For 
highly dynamic problems, such large time steps are not 
practical.

Example 2

The model also was compared with dynamic model 
DWOPER (Fread, 1978). DWOPER is based on the four- 
point implicit computational scheme. Experience has shown 
that the DWOPER algorithm works satisfactorily for gently 
sloping streams and slowly changing dynamic conditions, 
but is more difficult to use on steep slopes and (or) under 
rapidly changing flow conditions. To facilitate comparison 
of the new model with DWOPER, example 2 was based on 
the same cross sections used in example 1 but had a much 
gentler thalweg profile (figs. 5 and 6; table 1). The profile 
included gentle slopes of 0.02 percent near the ends, 
steepening to only 0.24 percent near the middle of the 
profile at 25,000 feet; this mild slope ensured that the flow 
was always subcritical. The input discharge hydrograph at 
the upstream boundary was similar to that of example 1, but 
rose less abruptly from a low constant discharge of 90 cubic 
feet per second at time zero to a high constant discharge of 
900 cubic feet per second at time 8 minutes (fig. 7). The 
water depth at the downstream boundary (60,000 feet) was 
set at 5 feet to provide the second required boundary 
condition. The computational elements had space dimen­

sions of 2,000 feet, as in example 1, and again the corner 
nodes coincided with the data cross sections. The DWOPER 
computational nodes were also chosen at the 2,000-foot 
spacing of the data cross sections. A time step of 1 minute 
was used for both models. A Manning's coefficient of 0.030 
was used throughout, and the steep-slope factor was again 
set at unity. The neighborhoods of restriction were specified 
by setting the parameters %=0.5 and 6=0.5.

Results of the comparison are given in the depth 
profiles of figure 9. Only that part of the reach from 0 to 
50,000 feet was compared in order to stay some distance 
from the lower boundary; the backwater curve from the 
5-foot downstream depth is, however, still visible near 
50,000 feet because of the gentle slope. The solid curves in 
figure 9 were computed using the model described in this 
paper. The overlying squares show depths computed using 
DWOPER. Overall agreement between the two models was 
excellent, except near the flood-profile front, where 
DWOPER water depths were too small. This phenomenon 
is a known difficulty of the DWOPER 4-point scheme that 
is caused by high-frequency waves numerically moving 
ahead of the main flood rise.

A mass conservation check again showed excellent 
balance. From time zero to 4 hours, over the reach from 0 to 
50,000 feet, the new model computed the following 
volumes:

Cubic feet

Inflow........................................
-Outflow....................................

Difference..................................
-Change in channel storage.......

Error ........................................ ..

12,765,600
-2,403,424

10,362,176
.. -10,371,201

-9,025

This error represents only 0.07 percent of the inflow volume 
to the reach. It was not necessary to run this example as long 
as example 1, because comparison in example 2 is with a 
dynamic model, and there was no need to reach steady state, 
as was the case in example 1. The model's approximation to 
mass conservation seems to be slightly better with milder 
slopes, more nearly prismatic channel geometry, and less 
sharply rising hydrographs, given the same cross-sectional 
spacing.

The effect of using restricted neighborhoods can be 
shown using the data of example 2. In the first demon­ 
stration, the water-depth profile of example 2, as run above 
using %=0.5, 6=0.5, and Af=4 seconds, was compared 
against results of a model run using neighborhoods equal 
to the full space-time elements, that is, using x=l and 6=1 
(fig. 10). Because of the relatively short time steps, 
specifying %=0.5 and 6=0.5 was equivalent to specifying 
X=1.0 and 6=0.5; thus, the comparison focuses on 
restricting the neighborhood vertically. Figure 10 shows 
that the restricted neighborhoods diminish overshoot of the 
profile below the initial steady-state profile at the front, at 
the expense of some spreading of the front.
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In a second demonstration, example 2 was rerun 
using A?=15 minutes, and the water-surface profile obtained 
by using 0.5 for both x and 6 was compared with that 
obtained using 1 for both parameters (fig. 11). Because of 
the relatively long time steps, choosing %=0.5 and 6=0.5

was equivalent to specifying %=Q.5 and 6=1; therefore, this 

comparison focuses on restricting the neighborhood hori­ 

zontally. Figure 11 shows that the restricted neighborhoods 

prevent oscillations in the profile.

Time = 0

n ° er-n n n n n cr 
i_____I_____I_____i_

Time= 10 minutes

Time = 25 minutes

10 15 20 25 30 35 40 

RIVER COORDINATE, IN THOUSANDS OF FEET

45 50

Figure 8 (above and facing page). Computed water-depth profiles for example 1. For com­ 
parison, the squares on the steady-state profiles at time zero and at time = 8 hours indicate depths 
calculated by step-backwater program J635 for a discharge of 180 cubic feet per second.
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FUTURE EXTENSION

The model described in this paper could form a basis 
for a one-dimensional sediment transport model that is 
suitable for rivers on steep slopes. In addition, future 
investigations may show whether the approach can be

extended to multidimensional streamflow models for rivers 
on steep slopes.

SUMMARY AND CONCLUSIONS

A robust computer model that can be used for 
unsteady streamflow on steep slopes has been presented.

Time = 0

Time = 0.5 hour

-B- a a B -o-

Time = 1 hour

10 15 20 25 30 35 40 

RIVER COORDINATE, IN THOUSANDS OF FEET

45 50

Figure 9 (above and facing page). Computed water-depth profiles for example 2. For com­ 
parison, the squares indicate depths calculated by the DWOPER computer model.
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Figure 10. Computed water-depth profiles showing effect of restriction of neighborhoods in time. Data of example 2 were used. 
At time = 2 hours, the profile computed using restricted neighborhoods specified by x=0.5 and 6=0.5 is compared with the profile 
computed with full-element neighborhoods having x=1 and 9=1. The time dimension of the neighborhoods is restrictive because 
of the relatively short time step of At=4 seconds. The initial steady-state depth profile is shown for reference.

The basis for the model is the method of characteristics on been added on each space-time element to ensure mass
a computational grid for which space-time nodes are 
specified independent of the characteristic paths. The model 
uses a finite element setting. Because standard implemen­ 
tations of the method of characteristics fail to conserve 
mass, an additional continuity equation requirement has

conservation. Channel parameters are approximated by 
Hermite interpolation to ensure enough smoothness with 
respect to river coordinate x and depth h; the smooth 
interpretation avoids numeric difficulties that occur on steep 
slopes because of discontinuities in parameters such as the
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Figure 11 . Computed water-depth profiles showing effect of restriction of neighborhoods in space. Data of example 2 were used, 
except that At=15 minutes. At time = 2 hours, the profile computed using restricted neighborhoods specified by X=0.5 and 9=0.5 
is compared with the profile computed with full-element neighborhoods having x=1 and 9=1. The space dimension of the 
neighborhoods is restrictive because of the relatively long time step. The initial steady-state depth profile is shown for reference.

top width B. Channel parameters are interpolated from input 
data cross sections that are independent of computational 
elements and nodes, allowing concentration of the com­ 
putational elements in regions that experience large changes

in discharge Q and (or) water depth h. A procedure has 
been included for modifying Manning's friction slope to 
make it appropriate for steep river slopes, although this 
steep-slope factor is not otherwise needed for proper
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performance of the model. The model is not restricted to 
steep slopes, but is applicable to gently sloping streams as 
well.
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INDEX OF VARIABLE DEFINITIONS, 
INTERPOLATIONS, AND DERIVATIVES

The associated equation number is shown. In some cases, the equation referenced is written in terms of another 
variable, but a similar equation applies to the indexed variable; in these cases, the equation number is enclosed in 
parentheses.

* ** ^ ................ 122
da%

X" .............. (129)
c

dx+
................ 129

*£

d (c

 Jf
A ...

B . . . .

B ...

c . . . .

h

n . . . .

"j 
Nq
*

n

P

P* ...

Q ....
ftSf ...

Sf ...ro

u ....

x(£ n)

r ( 7\

~(

*
,

h+ ...

 

" "

V_l_

.. 184, (209), 216

.............. 108

.............. 209

125

............... 11

.............. 110

............ 12-17

............ 18-21

............ (209)

.............. 109

............. (209)

............... 10

............... 92

............... 93

23 25 29

.............. 121

...... 22, 24, 26

............ (209)

.............. 169

.............. 229

.............. 210

...... (172)-(183)

.......... 172-183

............... 91

............... 90

................ 9

................ 7

............. 133

.........
k

3 D

Qgll

dc
n fa

k
an
dab

dn
da*

dP
da*

du
da*

dx^
dak

dx+ 
da*

k

d (dh]da*[atJ """

d (dh]
da*(dx)

d (dA*}
da*ldx J

dSw

dc
da*  ' - - 

dQ_

daQ

....... 112

....... 127

....... 101

....... 115

....... 114

....... 122

..... (130)

....... 130

....... 105

....... 103

....... 116

....... 237

....... 126

........ 94

............. 98

f|S] ............. 96
'/c 1 XJ

BA* 01R 
^-................. 218

 jf 

|f- ................ 215

IT -.-.--. ^15) 

|f .............. (215)

1 ................. 170

d(ASf)
-    ............. 135
dn

d(ASf)
  ±  134dP .............

d(ASf)
BIT*- ' -  '- -' 132

|f ................. 104

dN*
  *  34 dt .................

dN$.

TT^- ................. 34
dt

Index of Variable Definitions, Interpolations, and Derivatives 43



_ J.at2   '    

3 2N<?
at2

at2    "  
f\

at2 "     

30at         

3x         

*
3x        

3x         

dB
dx     " 

dc
dx   -    

dh
dx    "   

dQ
dx     "  

dn
dx   ""  

dNh.
_ J.
dx
a//?
3x        

*

dx 

dPdx         
3P*
3x        

V
dx        

3u3x         

3z» o3x        

...... 59, 63

...... 59, 63

.......... 61

.......... 61

.......... 97

........... 4

....... (212)

......... 118

......... 212

1 OQ

......... 102

.......... 95

......... 120

.......... 34

34

....... (212)

......... 119

....... (212)

......... 238

......... 124

....... (212)

dx         

3x+
3x         

dS
dx          

3 (dh\
dx[dt) '""

d 2Nh.
dx dt  '    

3 zAr?
___ Jdx dt     "

\°Q\ax[atj      

a 2 ;?
3x at       

3x at        

aV
3x2

II3x[axJ      

d 2Nh.

3x2      "

2 JO

WA

a pgl

c i ~\
a \dz h \a b\
dx[dx J '  "

a 2,
ax2 "    

3 2 C

3x2 " " "
w .** 

3SW

...... ^uj.;

........ 131

........ 211

........ 107

. .... 60, 64

..... 60, 64

........ 100

......... 61

......... 61

...... (221)

........ 106

..... 58, 62

..... 58, 62

......... 99

...... (221)

......... 61

......... 61

........ 235

ar      

3S " "
dNh.

dr,      

a//?
   J-
dr.

at
drj

dx
dr, '     

3V?

3i/ 2

dr, 2

dN^

d J

dt

dx
3C

o2irh3 N .

3C dr.

d 2̂

3C dr.

8 2Nh.

ze2o£

3 ZAT<
3C 2    '

3 2^..
a W2

rr
J-i

....... J.77-Z.UO

. .. (199)-(206)

......... 44-49

......... 54-57

............ 30

............ 28

............ 69

............ 77

......... 38-43

......... 50-53

............ 31

............ 27

......... 70-75

......... 78-79

......... 65-68

............ 76

....... 222-225

....... 187-197

44 Mass-Conserving Method of Characteristics for Streamflow Modeling

 frU.S. GOVERNMENT PRINTING OFFICE: 1992-673-049/46036


